
ATTiny85 Arcade workshop
Kristof Van Beeck - Dries Hulens

ID

2

• 09:00 Introduction

• 09:30 PCB Design intro

• 09:45 PCB Soldering & electrical testing

• 10:45 PCB Test & bootloader

• 11:00 SW intro (OLED, I2C, ADCs, Interrupts)

• 12:00 Lunch break

• 12:30 SW intro (OLED, I2C, ADCs, Interrupts)

• 13:30 Develop simple game (Snake)

• 15:30 Download finished games

• 16:00 End

Overview of today

Hardware

Software

Software

3

• 09:00 Introduction

• 09:30 PCB Design intro

• 09:45 PCB Soldering & electrical testing

• 10:45 PCB Test & bootloader

• 11:00 SW intro (OLED, I2C, ADCs, Interrupts)

• 12:00 Lunch break

• 12:30 SW intro (OLED, I2C, ADCs, Interrupts)

• 13:30 Develop simple game (Snake)

• 15:30 Download finished games

• 16:00 End

Overview of today

Hardware

Software

Software

4

Introduction

• Build a mini hand-held battery power arcade game
console from scratch

• Specs:
• ATTiny85 controller (8K Bytes memory)

16 MHz

• OLED screen

• 5 push buttons (full D-pad + action button)

• On/off slide switch

• Piezo buzzer for sound effects

• CR2032 battery

• Through-hole PCB

5

Introduction

• Credits!

Original implementation from Electronoobs

D-pad upgrade & most games from Daniel C.

Some games created by Andy Jackson

https://electronoobs.com/eng_arduino_tut120.php
https://www.tinyjoypad.com/tinyjoypad_attiny85
https://github.com/andyhighnumber/Attiny-Arduino-Games

6

Introduction

• We’ll go over entire development:
• Schematic ➔ draw and manufacture PCB ➔ Soldering ➔ Electrical test ➔ SW test ➔

Software implementation of simple game

• PCB Design: EAGLE Layout Editor

• Software is written using Arduino IDE and language

• 17 supported games (one at a time ☺):

7

Introduction

Space Invaders (1978)Frogger (1981)

Q*bert (1982) Arkanoid (1986) Excite Bike (1984)

Dugger (1988)

Bomberman (1983)

Tiny Gilbert (platformer)

https://www.youtube.com/watch?v=hkp_OjNX4Ss
https://www.youtube.com/watch?v=PtYDiMktu9M
https://www.youtube.com/watch?v=1lALQOw190M&feature=youtu.be
https://www.youtube.com/watch?v=dlDt-5oEnIw
https://youtu.be/TeqHoSFIo0U
https://youtu.be/0Dm1qFoj8GA
https://www.youtube.com/watch?v=0okr0_vsDwI
https://www.youtube.com/watch?v=yv-ZH0_JHi0

• 17 supported games (one at a time ☺):

8

Introduction

Tetris (1984)Hat Trick (1988)

Morpion (tic-tac-toe) Pacman (1980) Pinball (1984)

Plaque Attack (1983)

Pipeline (1978)

Missile Command (1980)

Snake (1976)

https://youtu.be/ub3K0bkFh1c
https://youtu.be/PT78cFqzk-I
https://youtu.be/JWH-4wWavF8
https://www.youtube.com/watch?v=NwdJZ5ZICMM
https://www.youtube.com/watch?v=p6qU1dX1JiU
https://youtu.be/GQ1IJgQIZMA
https://youtu.be/galWVpOzRkk
https://youtu.be/orzP3zrHqCM

• 3D printed housing

• Not part of this workshop

• Fusion360 CAD software (free for students!) – Prusa MK3 printer

9

Introduction

• Location of course files:

https://gitlab.com/EAVISE/workshops/

ATTinyArcadeV2

• Task 1:

• Download ZIP from course URL

• Contains these slides, PCB, datasheets, games, SW templates,…

• Extract to D:\ drive

10

Introduction

https://gitlab.com/EAVISE/workshops/

11

Introduction – ATTiny85 microcontroller

12

Introduction - schematic

13

Introduction - PCB

• Task 2:

• Use the datasheets to calculate the battery life of this mini handheld game console!

14

Introduction

18

• 09:00 Introduction

• 09:30 PCB Design intro

• 09:45 PCB Soldering & electrical testing

• 10:45 PCB Test & bootloader

• 11:00 SW intro (OLED, I2C, ADCs, Interrupts)

• 12:00 Lunch break

• 12:30 SW intro (OLED, I2C, ADCs, Interrupts)

• 13:30 Develop simple game (Snake)

• 15:30 Download finished games

• 16:00 End

Overview of today

Hardware

Software

Software

• Task 3:

• Copy folder “ATTinyArcade_PCB” (under hardware) to:

C:\Users\student\Documents\EAGLE\projects\

If folder does not exist yet, first open Eagle and login

• Open Eagle from desktop

If login is required:

“elektronicaworkshop@gmail.com”

pwd: “arduinoide1”

• Open project (both schematic and PCB – press F5 if not yet visible)

19

PCB Design intro

• Task 4:

• Add the power LED and resistor to the schematic

• Position and route both the LED and resistor on the PCB

• Perform ERC and DRC check
• https://jlcpcb.com/capabilities/Capabilities

➔ Use the jlcpcb2layer.dru file

• Use the CAM generator to generate Gerber files
➔ Use the jlcpcb_2_layer_v9.cam file

• Upload Gerber files to your favorite PCB fab
➔ e.g. https://jlcpcb.com/

• View PCB preview and check for errors

20

PCB Design intro

https://jlcpcb.com/capabilities/Capabilities
https://jlcpcb.com/

21

• 09:00 Introduction

• 09:30 PCB Design intro

• 09:45 PCB Soldering & electrical testing

• 10:45 PCB Test & bootloader

• 11:00 SW intro (OLED, I2C, ADCs, Interrupts)

• 12:00 Lunch break

• 12:30 SW intro (OLED, I2C, ADCs, Interrupts)

• 13:30 Develop simple game (Snake)

• 15:30 Download finished games

• 16:00 End

Overview of today

Hardware

Software

Software

• PCB for this workshop has been designed completely through hole

• Solder from lowest components to highest components

• Do not forget solder jumpers

• Note polarities and positions of components!

• After soldering we perform an electrical test

22

PCB Soldering

23

PCB Soldering

See solder guide here:

https://gitlab.com/EAVISE/workshops/attinyarcadev2/-

/blob/main/SOLDER_GUIDE.md

https://gitlab.com/EAVISE/workshops/attinyarcadev2/-/blob/main/SOLDER_GUIDE.md
https://gitlab.com/EAVISE/workshops/attinyarcadev2/-/blob/main/SOLDER_GUIDE.md

• Move to lab A111

• Hope to finish around 10:45

24

PCB Soldering

25

• 09:00 Introduction

• 09:30 PCB Design intro

• 09:45 PCB Soldering & electrical testing

• 10:45 PCB Test & bootloader

• 11:00 SW intro (OLED, I2C, ADCs, Interrupts)

• 12:00 Lunch break

• 12:30 SW intro (OLED, I2C, ADCs, Interrupts)

• 13:00 Develop simple game (Snake)

• 15:30 Download finished games

• 16:00 End

Overview of today

Hardware

Software

Software

• Let’s now burn the bootloader (set the fuses) and test the hardware of the

board!

• Task 5

26

PCB Test & bootloader

• First, install the ATTiny85 libraries

• Start Arduino IDE, go to File ➔ Preferences

Add an additional board manager URL:

https://raw.githubusercontent.com/damellis/attiny/ide-1.6.x-boards-

manager/package_damellis_attiny_index.json

27

PCB Test & bootloader

https://raw.githubusercontent.com/damellis/attiny/ide-1.6.x-boards-manager/package_damellis_attiny_index.json
https://raw.githubusercontent.com/damellis/attiny/ide-1.6.x-boards-manager/package_damellis_attiny_index.json

• Tools ➔ Board ➔ Board manager

• Search for attiny, install the board:

• attiny (by David A. Mellis - version 1.0.2)

28

PCB Test & bootloader

• Under Tools ➔ Board ➔ “Attiny Microcontrollers” should now be available

29

PCB Test & bootloader

• We’re going to use the Arduino Uno as ISP programmer to program the

ATTiny85 on our PCB, using the header at the back

• Connect the Arduino Uno to the PCB header as shown on next slide (do not

connect the Uno through USB yet)

• Double check connections when finished

• Connect Arduino Uno to USB on desktop

30

PCB Test & bootloader

31

PCB Test & bootloader

Arduino

Uno

ATTiny85

Arcade

PCB

3V3 VCC

D11 MOSI

D12 MISO

D13 SCK

D10 RESET

GND GND

• Upload the Arduino ISP code to the Arduino Uno

• First, open the ISP code:

File ➔ Examples ➔ 11. ArduinoISP➔ ArduinoISP

32

PCB Test & bootloader

• Select the correct board:

Tools ➔ Board

(set to Arduino Uno)

Tools ➔ Port

(select correct COM port)

Tools ➔ Programmer

(select AVRISP mkII)

• Upload code to board!

33

PCB Test & bootloader

• We can now use the Arduino Uno as ISP to program our ATTiny85 PCB

• First, we need to burn the bootloader (which sets the fuses)

34

PCB Test & bootloader

• Under Tools, make sure to select the following options:

Board: “ATTiny25/45/85”

Processor: “ATTiny85”

Clock: 16 MHz internal➔ EXTREMELY IMPORTANT

35

PCB Test & bootloader

• Make sure to change Tools ➔ Programmer to Arduino as ISP

• Click on Tools ➔ Burn bootloader

• You should get: “Done burning bootloader” if everything went fine (and

some beep noises ☺), otherwise check connections again

36

PCB Test & bootloader

• We can now program the ATTiny85 from the Arduino IDE

• First, we run a simple hardware test program

• This runs the following sequence:

• Initialize ports of ATTiny85

• Initialize OLED screen

• Shows EAVISE logo (2 seconds)

• Plays sound

• Shows test screen to test D-pad and action button

37

PCB Test & bootloader

• This sketch is found under “/software/hw_test/”

• Open in Arduino IDE, make sure that ATTiny85 board is still selected with

16 MHz clock, and the programmer is Arduino as ISP

• Upload the code and test the hardware!

38

PCB Test & bootloader

39

• 09:00 Introduction

• 09:30 PCB Design intro

• 09:45 PCB Soldering & electrical testing

• 10:45 PCB Test & bootloader

• 11:00 SW intro (OLED, I2C, ADCs, Interrupts)

• 12:00 Lunch break

• 12:30 SW intro (OLED, I2C, ADCs, Interrupts)

• 13:30 Develop simple game (Snake)

• 15:30 Download finished games

• 16:00 End

Overview of today

Hardware

Software

Software

• Let’s now discuss the software side:

• The OLED screen interfacing

• I2C interface protocol

• User input

• ADCs

• Interrupts (optional)

40

SW intro (OLED, I2C, ACD, Interrupts)

• OLED screen specs:

• SSD1306 controller

• Supports I2C & SPI

• 128 x 64 pixels

• 0.96-inch diagonal

• Supply voltage 3.3V – 5V

41

SW intro (OLED)

• OLED technology:

• Similar to LED, emissive electroluminescent layer is a film of organic compound that

emits light in response to an electric current

• PMOLED and AMOLED

42

SW intro (OLED)

https://www.unisystem-displays.com/en/news/all-about-oleds.html

• OLED technology:
• Each pixel emits visible light (as opposed to an LCD screen)

• Advantages:

• Excellent brightness and contrast

• Wide viewing-angle

• No need for backlight: smaller, lightweight, flexible, uses less power

• Fast response time

• Disadvantages:

• Expensive technology

• Limited lifetime of organic material

• Prone to environmental factors (e.g. moisture)

43

SW intro (OLED)

https://www.unisystem-displays.com/en/news/all-about-oleds.html

44

SW intro (OLED)

https://www.unisystem-displays.com/en/news/all-about-oleds.html

• Our screen uses I2C for communication with the SSD1306 controller:
• Inter-Integrated circuit bus

• Two wire interface: SCK & SDA: bidirectional and open-collector or open-drain (pull-up required)

45

SW intro (I2C)

Texas Instruments - Application Report SLVA704–June 2015 Understanding the I2C Bus

• I2C

• Controller (master) communicates with slave devices

• Slave may not transmit data unless addressed

• Each device on the I2C bus has a specific address

• Many slave devices require configuration upon startup to set behavior

• Typically done through the slave’s internal register maps

• A device can have one or multiple registers where data is stored, written or read

46

SW intro (I2C)

Texas Instruments - Application Report SLVA704–June 2015 Understanding the I2C Bus

47

SW intro (I2C)

Texas Instruments - Application Report SLVA704–June 2015 Understanding the I2C Bus

48

SW intro (I2C)

• I2C message

Texas Instruments - Application Report SLVA704–June 2015 Understanding the I2C Bus

49

SW intro (I2C)

• OLED screen - SSD1306 implementation: datasheet p. 20

Note:

I2C address: 01111000 ➔ 0x78

Write data or command: 00000000 ➔ 0x00

01000000 ➔ 0x40

50

SW intro (OLED)

• Now we know how to send data

• What should we send to do what? ➔ Command table (p. 28 – 32)

• Different types: fundamental, scrolling, addressing, HW configuration, timing

51

SW intro (OLED)

• How does the screen work?

52

SW intro (OLED)

• Set address pointer for GDDRAM

53

SW intro (OLED)

• Startup sequence

54

SW intro (OLED)

• Let’s have a look how this is programmed in our Arduino IDE

• Task 6:

• Open “oled_driver.ino” in Arduino IDE

• Examine code, try to understand how it works

• Use the loop function to:
1. Initialize the screen

2. Clear the screen

3. Draw a one-pixel border around the screen

4. Write your name in the middle of the screen, using:
void ssd1306_char_f6x8(uint8_t x, uint8_t y, const char ch[])

5. Optional: move or scroll it across the screen? Experiment yourself!

55

• 09:00 Introduction

• 09:30 PCB Design intro

• 09:45 PCB Soldering & electrical testing

• 10:45 PCB Test & bootloader

• 11:00 SW intro (OLED, I2C, ADCs, Interrupts)

• 12:00 Lunch break

• 12:30 SW intro (OLED, I2C, ADCs, Interrupts)

• 13:30 Develop simple game (Snake)

• 15:30 Download finished games

• 16:00 End

Overview of today

Hardware

Software

Software

56

• 09:00 Introduction

• 09:30 PCB Design intro

• 09:45 PCB Soldering & electrical testing

• 10:45 PCB Test & bootloader

• 11:00 SW intro (OLED, I2C, ADCs, Interrupts)

• 12:00 Lunch break

• 12:30 SW intro (OLED, I2C, ADCs, Interrupts)

• 13:30 Develop simple game (Snake)

• 15:30 Download finished games

• 16:00 End

Overview of today

Hardware

Software

Software

57

SW intro (User Input - ADC)

• Now we are going to read the user input buttons

• How many user IOs are there? How many pins on microcontroller?

• Schematic:

58

SW intro (User Input - ADC)

• We use a trick to reduce the required IO ports

• Often used in hardware design

59

SW intro (User Input - ADC)

• We use different analog values through voltage dividers on the analog

inputs of the ATTiny85

• ADCs to determine button press!

• How do they work on the ATTiny85?

• 4 channels, single 10-bit ADC

• Successive approximation

60

SW intro (User Input - ADC)

61

SW intro (User Input - ADC)

62

SW intro (User Input - ADC)

63

SW intro (User Input - ADC)

• A lot of settings!

• MUX, reference voltage, enables, pre-scaler, interrupts, how 10-bit is

stored in 8-bit registers, mode of operation,…

• 5 registers!

• Luckily, Arduino libraries perform lots of abstraction:

analogReadResolution(10) ;

analogReference(DEFAULT);

analogRead(A0);

64

SW intro (User Input - ADC)

• Task 7:

• Calculate the expected ADC values for each of the 4 buttons (up, down,

left, right)

• Open “user_input.ino” in Arduino IDE

• Examine code, try to understand how it works

• Extend the code to:

1. Initialize the user IOs

2. Show the ADC values on the OLED screen

tip: itoa(); to convert int to char

3. Show which buttons were pressed

65

• Reading buttons this way is not efficient

• Sometimes OK, when SW routine is very predictable (e.g. game console)

• Interrupt the running code to do something else

• (Very) short routines (no delays)!

• Internal or external

• Examples: timer, watchdog, keyboard, sensor, switch

SW intro (Interrupts - optional)

• ACTION button is on PCINT0 pin

• Two types in ATTiny85

• INT0 triggers a direct dedicated interrupt routine
• Rising or falling is set through register

• PCINT (Pin Change INTerrupt) triggers an interrupt routine if one of the PCINT pins are
triggered. You have to check which pin and what change yourself in the interrupt routine

66

SW intro (Interrupts - optional)

67

SW intro (Interrupts - optional)

• INT0

void routine() {

YOUR CODE HERE
}

attachInterrupt(digitalPinToInterrupt(PIN_NUMBER), routine, RISING);

Note: not supported

by all ATTiny-cores

68

SW intro (Interrupts - optional)

• PCINT0_vect

Set registers yourself in setup() of Arduino code!

ISR(PCINT0_vect) {

YOUR CODE HERE (check which pin and change)

}

PCMSK |= bit (PCINT0);
GIMSK |= 0b00100000;

69

SW intro (Interrupts - optional)

• Finally, enable all interrupts

• sei(); or interrupts();

• cli(); or noInterrupts();

70

SW intro (Interrupts - optional)

• Let’s have a look how this is programmed in our Arduino IDE

• Task 8 - optional:

• Extend “user_input.ino” with interrupt routine for the ACTION button

• Uncomment the previous code for ACTION button read

71

• 09:00 Introduction

• 09:30 PCB Design intro

• 09:45 PCB Soldering & electrical testing

• 10:45 PCB Test & bootloader

• 11:00 SW intro (OLED, I2C, ADCs, Interrupts)

• 12:00 Lunch break

• 12:30 SW intro (OLED, I2C, ADCs, Interrupts)

• 13:30 Develop simple game (Snake)

• 15:30 Download finished games

• 16:00 End

Overview of today

Hardware

Software

Software

72

Develop simple Snake game

• Final task 9:

• program a simple game: Snake

• Rules:

• Snake moves in one of four directions at each new timeframe

• Direction controlled by D-pad

• Bait randomly positioned on screen

• If bait is catched, length of the snake, score and speed increases

• At borders, snake reappears at the opposite side of the game grid

• Game over when snake collides with itself

73

Develop simple Snake game

• How to start?

➔Develop flowchart of game

• This has already been done for you! Let’s have a look.

74

Develop simple Snake game

• A skeleton code framework has already been developed for you

• You need to write specific functions

• Some are optional

• Let’s look at the Arduino code

• Download the skeleton code and run

• Generates startup

• Gives heartbeat and draws border

75

Develop simple Snake game

• Render_game() explanation

• Game grid is 16 x 32

Stored in unsigned long screenBuffer[16];

= 4 bytes = 32 bits

• Screen is 64 x 128

Each game pixel is a 4 x 4 pixel on the OLED screen

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 0 0 1

1 0 0 1

1 1 1 1

1 pixel border

76

Develop simple Snake game

• Render_game() converts the screenBuffer[16] variable to OLED pixels

• You only need do two things:

• Set a ‘1’ at each position in the screenBuffer for each segment of the snake and the

single bait

• Indicate the position of the bait with two variables

• int baitX

• int baitY

• Note: allowed snake and bait positions are X: 0-31 and Y: 0-15

77

Develop simple Snake game

• Let’s try this:

• Uncomment draw_snake() and upload

• Now it’s up to you!

• Task 9 begins: you are now going to implement the missing functions

yourself

• One by one: upload after each (partly) adjusted function

• We’ll walk you through each function (don’t worry ☺)

78

Develop simple Snake game (1)

• First, define a global variable to hold the current direction

• Byte: 0: up, 1: left, 2: down, 3: right
• Don’t forget to reset this variable in resetGame();

• Function checks if U/D/L/R was pressed, and changes the direction if needed

• Move in opposite direction not allowed!

• To test, print the current direction as text on the screen

• Upload to test if it works! ➔ any remaining issues?

• Move each segment of the snake in the right direction

• Use variables xPos[], yPos[] and len

• Tip: use case-statement since direction is unambiguous

• Don’t forget the borders of the screen!

• Note: valid xPos = 0 – 31, valid yPos = 0-15

• Upload! The snake should now move over the game grid

79

Develop simple Snake game (2)

• Generate random positions for a new bait (preferably not on the edges)

• baitX: 1 – 30, baitY: 1 – 14

• Test if bait is not dropped on snake itself!

• Print baitX and baitY somewhere on the screen as test for now

80

Develop simple Snake game (3)

• See if the snake catched the bait with its head

• Return Boolean true or false

• Increment score and len in this function

• Don’t forget to limit the len to maxLen

• You can play a sound if the bait is catched

playMusic(BaitMusic, 4);

• Do not upload yet, first fix next function

81

Develop simple Snake game (4)

82

Develop simple Snake game (5)

• Draw the bait in the screen buffer

• Set a ‘1’ at the correct location in the buffer

• Remember: render_game() knows the difference between bait and snake based
on baitX and baitY

• Use function draw_snake() as example

• Extremely short function

• Upload and test! You should be able to play the game (without collision
detection)

83

Develop simple Snake game (6)

• See if the head of the snake collided with a segment of itself

• Return Boolean true or false

84

Develop simple Snake game

• That’s it! The game is finished. Well done.

• We have some optional functions left (simple – intermediate – advanced

expert):

• Simple! Draw the current score each frame in one of the corners of the

screen

85

Develop simple Snake game

• Intermediate!

• At startup of the game see if e.g. UP was held pressed for specific time

(e.g. 2 seconds)

• Mute or unmute sound if this was the case

• Through global variable

• Use as condition in beep-function

• Display mute or sound on top of the screen at startup

• Advanced! Use EEPROM to store previous high score

• After game over, load the high score from EEPROM

• Compare with current score

If higher, display on screen and write new high score to EEPROM

• Tips: EEPROM.read(), EEPROM.write()

EEPROM is read/written per byte. Int is 2 bytes long

86

Develop simple Snake game

• Expert!

• After game over, put ATTiny85 in sleep mode

• Wake up after interrupt (PCINT0)

• Steps: clear and switch off OLED screen, switch ADC off, then enable sleep

mode and sleep. On power up from sleep switch ADC and OLED screen

back on

87

Develop simple Snake game

• Develop your own variations!

• Game over when you go out of the screen?

• You could for example use the ACTION button to let the snake jump

over itself!

88

Develop simple Snake game

89

• 09:00 Introduction

• 09:30 PCB Design intro

• 09:45 PCB Soldering & electrical testing

• 10:45 PCB Test & bootloader

• 11:00 SW intro (OLED, I2C, ADCs, Interrupts)

• 12:00 Lunch break

• 12:30 SW intro (OLED, I2C, ADCs, Interrupts)

• 13:30 Develop simple game (Snake)

• 15:30 Download finished games

• 16:00 End

Overview of today

Hardware

Software

Software

• Feel free to download any of the following finished games, found in the

finished_games folder:

90

Download finished games

Space Invaders (1978)Frogger (1981)

Q*bert (1982) Arkanoid (1986) Excite Bike (1984)

Dugger (1988)

Bomberman (1983)

Tiny Gilbert (platformer)

https://www.youtube.com/watch?v=hkp_OjNX4Ss
https://www.youtube.com/watch?v=PtYDiMktu9M
https://www.youtube.com/watch?v=1lALQOw190M&feature=youtu.be
https://www.youtube.com/watch?v=dlDt-5oEnIw
https://youtu.be/TeqHoSFIo0U
https://youtu.be/0Dm1qFoj8GA
https://www.youtube.com/watch?v=0okr0_vsDwI
https://www.youtube.com/watch?v=yv-ZH0_JHi0

• Feel free to download any of the following finished games, found in the

finished_games folder:

91

Introduction

Tetris (1984)Hat Trick (1988)

Morpion (tic-tac-toe) Pacman (1980) Pinball (1984)

Plaque Attack (1983)

Pipeline (1978)

Missile Command (1980)

Snake (1976)

https://youtu.be/ub3K0bkFh1c
https://youtu.be/PT78cFqzk-I
https://youtu.be/JWH-4wWavF8
https://www.youtube.com/watch?v=NwdJZ5ZICMM
https://www.youtube.com/watch?v=p6qU1dX1JiU
https://youtu.be/GQ1IJgQIZMA
https://youtu.be/galWVpOzRkk
https://youtu.be/orzP3zrHqCM

• A few online sources for other games:

• https://github.com/andyhighnumber/Attiny-Arduino-Games

• https://github.com/webboggles/AttinyArcade

• https://www.tinyjoypad.com/tinyjoypad_attiny85

• https://www.tinyjoypad.com/arduboy

• …

➔ Some require code modification or additional libraries (e.g. different pins for

OLED, coded for fewer buttons, etc.)

92

Download finished games

https://github.com/andyhighnumber/Attiny-Arduino-Games
https://github.com/webboggles/AttinyArcade
https://www.tinyjoypad.com/tinyjoypad_attiny85
https://www.tinyjoypad.com/arduboy

93

• 09:00 Introduction

• 09:30 PCB Design intro

• 09:45 PCB Soldering & electrical testing

• 10:45 PCB Test & bootloader

• 11:00 SW intro (OLED, I2C, ADCs, Interrupts)

• 12:00 Lunch break

• 12:30 SW intro (OLED, I2C, ADCs, Interrupts)

• 13:30 Develop simple game (Snake)

• 15:30 Download finished games

• 16:00 End

Overview of today

Hardware

Software

Software

94

The end

• We hope you enjoyed this workshop!

	Dia 1
	Dia 2: Overview of today
	Dia 3: Overview of today
	Dia 4: Introduction
	Dia 5: Introduction
	Dia 6: Introduction
	Dia 7: Introduction
	Dia 8: Introduction
	Dia 9: Introduction
	Dia 10: Introduction
	Dia 11: Introduction – ATTiny85 microcontroller
	Dia 12: Introduction - schematic
	Dia 13: Introduction - PCB
	Dia 14: Introduction
	Dia 18: Overview of today
	Dia 19: PCB Design intro
	Dia 20: PCB Design intro
	Dia 21: Overview of today
	Dia 22: PCB Soldering
	Dia 23: PCB Soldering
	Dia 24: PCB Soldering
	Dia 25: Overview of today
	Dia 26: PCB Test & bootloader
	Dia 27: PCB Test & bootloader
	Dia 28: PCB Test & bootloader
	Dia 29: PCB Test & bootloader
	Dia 30: PCB Test & bootloader
	Dia 31: PCB Test & bootloader
	Dia 32: PCB Test & bootloader
	Dia 33: PCB Test & bootloader
	Dia 34: PCB Test & bootloader
	Dia 35: PCB Test & bootloader
	Dia 36: PCB Test & bootloader
	Dia 37: PCB Test & bootloader
	Dia 38: PCB Test & bootloader
	Dia 39: Overview of today
	Dia 40: SW intro (OLED, I2C, ACD, Interrupts)
	Dia 41: SW intro (OLED)
	Dia 42: SW intro (OLED)
	Dia 43: SW intro (OLED)
	Dia 44: SW intro (OLED)
	Dia 45: SW intro (I2C)
	Dia 46: SW intro (I2C)
	Dia 47: SW intro (I2C)
	Dia 48: SW intro (I2C)
	Dia 49: SW intro (I2C)
	Dia 50: SW intro (OLED)
	Dia 51: SW intro (OLED)
	Dia 52: SW intro (OLED)
	Dia 53: SW intro (OLED)
	Dia 54: SW intro (OLED)
	Dia 55: Overview of today
	Dia 56: Overview of today
	Dia 57: SW intro (User Input - ADC)
	Dia 58: SW intro (User Input - ADC)
	Dia 59: SW intro (User Input - ADC)
	Dia 60: SW intro (User Input - ADC)
	Dia 61: SW intro (User Input - ADC)
	Dia 62: SW intro (User Input - ADC)
	Dia 63: SW intro (User Input - ADC)
	Dia 64: SW intro (User Input - ADC)
	Dia 65: SW intro (Interrupts - optional)
	Dia 66: SW intro (Interrupts - optional)
	Dia 67: SW intro (Interrupts - optional)
	Dia 68: SW intro (Interrupts - optional)
	Dia 69: SW intro (Interrupts - optional)
	Dia 70: SW intro (Interrupts - optional)
	Dia 71: Overview of today
	Dia 72: Develop simple Snake game
	Dia 73: Develop simple Snake game
	Dia 74: Develop simple Snake game
	Dia 75: Develop simple Snake game
	Dia 76: Develop simple Snake game
	Dia 77: Develop simple Snake game
	Dia 78: Develop simple Snake game (1)
	Dia 79: Develop simple Snake game (2)
	Dia 80: Develop simple Snake game (3)
	Dia 81: Develop simple Snake game (4)
	Dia 82: Develop simple Snake game (5)
	Dia 83: Develop simple Snake game (6)
	Dia 84: Develop simple Snake game
	Dia 85: Develop simple Snake game
	Dia 86: Develop simple Snake game
	Dia 87: Develop simple Snake game
	Dia 88: Develop simple Snake game
	Dia 89: Overview of today
	Dia 90: Download finished games
	Dia 91: Introduction
	Dia 92: Download finished games
	Dia 93: Overview of today
	Dia 94: The end

